Bernoulli, Ramanujan, Toeplitz and the triangular matrices

نویسندگان

  • Carmine Di Fiore
  • Francesco Tudisco
  • Paolo Zellini
چکیده

By using one of the definitions of the Bernoulli numbers, we prove that they solve particular odd and even lower triangular Toeplitz (l.t.T.) systems of equations. In a paper Ramanujan writes down a sparse lower triangular system solved by Bernoulli numbers; we observe that such system is equivalent to a sparse l.t.T. system. The attempt to obtain the sparse l.t.T. Ramanujan system from the l.t.T. odd and even systems, has led us to study efficient methods for solving generic l.t.T. systems. Such methods are here explained in detail in case n, the number of equations, is a power of b, b = 2, 3 and b generic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotone convex sequences and Cholesky decomposition of symmetric Toeplitz matrices

This paper studies off-diagonal decay in symmetric Toeplitz matrices. It is shown that if the generating sequence of the matrix is monotone, positive and convex then the monotonicity and positivity are maintained through triangular decomposition. The work is motivated by recent results on explicit bounds for inverses of triangular matrices. © 2005 Elsevier Inc. All rights reserved. AMS classifi...

متن کامل

On group inverse of singular Toeplitz matrices

In this paper we show that the group inverse of a real singular Toeplitz matrix can be represented as the sum of products of lower and upper triangular Toeplitz matrices. Such a matrix representation generalizes “Gohberg–Semencul formula” in the literature. © 2004 Elsevier Inc. All rights reserved. AMS classification: 15A09; 65F20

متن کامل

A note on inversion of Toeplitz matrices

It is shown that the invertibility of a Toeplitz matrix can be determined through the solvability of two standard equations. The inverse matrix can be denoted as a sum of products of circulant matrices and upper triangular Toeplitz matrices. The stability of the inversion formula for a Toeplitz matrix is also considered. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

On the maximum rank of Toeplitz block matrices of blocks of a given pattern

We show that the maximum rank of block lower triangular Toeplitz block matrices equals their term rank if the blocks fulfill a structural condition, i.e., only the locations but not the values of their nonzeros are fixed.

متن کامل

On the maximum rank of Toeplitz block matrices of blocks of a given pattern

We show that the maximum rank of block lower triangular Toeplitz block matrices equals their term rank if the blocks fulfill a structural condition, i.e., only the locations but not the values of their nonzeros are fixed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013